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Executive Summary 
During the warmer months, Marlborough District Council monitors the most popular swimming spots 
weekly to assess the risk to swimmers from waterborne diseases. The results are made available on 
the LAWA website, but water quality is highly variable, and the data is not suitable to provide users 
with up-to-date information on the health risk at a particular site. To overcome this, predictive models 
can be used and the LAWA website provides the ability to display model outputs.  

Analysis of the data showed that the datasets are highly skewed, with most data points in the low 
range of indicator bacteria concentrations and comparatively few data points indicating unsafe 
swimming conditions. The unbalanced data set limits the model approaches that can be used. 
However, simplifying the predictions into two categories (“safe” and “unsafe”) allows the use of logistic 
regression or boosted tree analysis despite the data limitations. 

Four model approaches were tested: Random Forest Classifier, Stochastic Gradient Boost, XGBoost, 
and Logistic Regression. Of these, Logistic Regression showed the greatest promise and was 
subsequently used.  

For all but two sites, rainfall or river flow are generally the best predictors of indicator bacteria 
concentrations. The exceptions were the monitoring sites on the lower Taylor River, which are heavily 
influenced by localized sources such as wildfowl and potential sewage/stormwater cross 
contamination.  

Three different preceding rainfall totals (12hr, 24hr, 48hr) from several rainfall stations near the 
swimming sites, as well as river flows (for river sites), were used as predictors for swimming safety.  

Table 1 shows the rainfall sites and associated rainfall totals (column 2) that best predicted if a site 
was safe for swimming. The right side of the table shows rainfall cut-offs for different probabilities. A 
probability of 0.5 means there is a 50% chance of unsafe bacteria levels.  

 

Table 1: Rainfall totals for different probability cut-offs, based on the best performing models for the 

individual monitoring sites. 
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Choosing a cut-off involves balancing minimizing risk to swimmers (lower probabilities) and reducing 
instances of predicting unsafe conditions when they are actually safe (higher probabilities). As the 
predictions concern human health, it is sensible to choose a lower probability for unsafe bacteria 
concentrations, such as a probability of 0.2.  

Regular monitoring of the sites should continue to ensure no significant short-term or long-term 
changes are occurring. Using the additional data collected each season, fine-tuning the existing 
model and further exploring the use of alternative approaches with different adjustment methods 
during model training and validation is necessary to keep the model outputs current. This should be 
done regularly, for example following every summer season. Additional monitoring during rainfall 
should be conducted whenever possible to provide better data for future model refinements.  
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1. Introduction  
Recreational activities such as swimming and boating in rivers and coastal areas are an essential part 
of the Kiwi lifestyle, especially during the summer months. While water quality is generally good, there 
are times when swimmers may be at risk from waterborne diseases, which can cause symptoms such 
as stomach aches and diarrhea. 

To assess these risks, the council monitors the most popular swimming spots during the warmer 
months of the year. Monitoring involves weekly sampling from the beginning of November until the 
end of March. These samples are analysed for indicator bacteria: E. coli for rivers and Enterococci for 
coastal waters. The concentrations of these bacteria are compared against national guidelines, which 
are designed to indicate the risk of contracting illnesses such as Campylobacteriosis, the most 
commonly reported waterborne disease in New Zealand. The guidelines aim to protect about 95-99% 
of users, though some individuals may be more susceptible than others. 

The guideline document [10] provides threshold values for each type of indicator bacteria. Based on 
these values, sample results are categorized into three “Modes.” Concentrations within the “Green 
Mode” indicate a low health risk to swimmers. If bacteria levels reach the “Alert Mode,” the infection 
risk increases slightly. Although swimming is still considered safe, this is a signal for the council to 
investigate potential sources of faecal pollution. Once bacteria concentrations exceed the “Action 
Mode” threshold, the health risk is deemed unacceptable. Table 2 shows the ranges of indicator 
bacteria concentrations for each “Mode”.  

Mode 

Coastal  Rivers 

Meaning Enterococci/ 
100mL 

E. coli/       
100mL 

 Green (Safe) Mode <140  <260  Safe for contact recreation 

 Amber (Alert) Mode 140 - 280 260 - 550 
Increased risk for health, but 

still considered safe  

 Red (Action) Mode >280 >550 Unsafe for contact recreation 

Table 2: Modes in the Microbiological Water Quality Guidelines for Marine and Freshwater Recreational 
Areas [10]. 

Once water samples have been taken, they are sent to Christchurch for analysed by an independent 
lab (Hill Labs), and results are received the day after sampling. Once available, the results can be 
viewed on the LAWA.org.nz website. Many users rely on the most recent results as an indicator of the 
current health risk to swimmers, assuming the data represents conditions until the next samples are 
taken. However, this is not an appropriate use of the information. Bacteria concentrations can 
fluctuate rapidly, sometimes within hours or even minutes. Therefore, the sample results only 
represent conditions at the specific date and time the sample was collected. 

Instead, users are encouraged to refer to the general site gradings (Suitability for Contact Recreation 
Grades – SFR Grades) to inform their decisions. These grades are based on data collected over 
several summer seasons and provide a broader assessment of a site’s suitability for swimming. More 
information about the SFR Grades can be found in the council's monitoring reports [7] and the 
national guideline document [10]. 

Many swimming sites have been monitored for over 15 years, and the data shows that high-risk 
bacteria levels usually occur after rainfall or during high river flows. As a result, the Marlborough 
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District Council and the local Health Board recommend avoiding swimming for at least 48 hours after 
rainfall or when water appears visibly turbid. 

Although this recommendation is shared with the public at the beginning of each summer season 
through media releases and information on the LAWA.org.nz website, many swimmers remain 
unaware. Additionally, visitors to swimming sites may not know whether it has rained recently in the 
area they are visiting, and finding rainfall information can be challenging. 

Fortunately, the relationship between rainfall or river flow and bacteria concentrations can be used to 
produce real-time predictions of health risks through modelling. While models always involve some 
uncertainty, careful selection of parameters and the use of a precautionary approach when setting 
thresholds can provide predictions that greatly improve upon the information currently available to 
users. 

2. Model Choice 
There are various models available for predicting the concentration of indicator bacteria, including 
linear regression, Bayesian networks, and machine learning approaches [5; 6]. Most of these models 
aim to predict bacteria concentrations, which are then used to assess the risk to swimmers. 

These modeling techniques typically require a wide range of sample results across different bacteria 
concentrations, along with associated predictor variables, and a relatively large number of data points 
[16]. However, because water quality at most swimming sites in Marlborough is generally good, 
bacteria concentrations are often low, with many samples showing levels below the detection limit 
(see Figure 1). 

 

Figure 1: Examples of the distribution of data (histograms) across indicator bacteria concentrations. The 
example sites are those with the best and worst recreational water quality for the two different types of 
sites (rivers and coastal beaches). 

As Figure 1 shows, that generally the number of sample results within the Action Mode (unsafe for 
swimming) is comparatively small even for sites with comparatively poor grading. This creates a 
challenge, as individual results at higher concentrations can disproportionately influence the model. 
To avoid this, a better approach is to categorize the data rather than using the actual concentration 
values. The guidelines provide three categories, but these can be simplified into two: concentrations 



 Predictive Models for Swimming Sites in Marlborough 

MDC Technical Report No. 25-002  3 

that are considered safe for swimming (Green and Amber Modes) and those that indicate an 
unacceptable health risk (Red Mode).  

By categorizing the data in this way, alternative modeling techniques, such as logistic regression or 
classification trees, can be employed. Logistic regression produces a probability function and is often 
used in medical research to predict the likelihood of illness or mortality based on factors such as age, 
exposure, and habits [2,13], but it has also been used in predictive models for recreational water 
quality [6].  

Classification trees are commonly used for prediction of recreational water quality [6, 17] and are able 
to also provide probability outputs. We trialed three different classification tree model approaches, 
Random Forest Classifier, Stochastic Gradient Boost and XGBoost. 

Despite catorization of the data, the unbalance in the dataset remains and can still lead to loss of the 
information in the category with few datapoints (the “unsafe” category) and overfitting of the category 
with the majority of the datapoints (the “safe’’ category). This needs to be carefully managed during 
model training. 

3. Methodology 
E. coli and Enterococci concentration results were categorized as either “0” for values in the Green 
and Amber Modes, or “1” for values in the Red (unsafe) Mode. Data from limited time periods when 
higher indicator bacteria levels were observed, but not linked to rainfall or river flow, were excluded. 
Examples are high Enterococci concentrations in Momorangi Bay due to a wastewater pipe breakage, 
or elevated Enterococci levels in Waikutakuta/Robin Hood Bay caused by large accumulations of 
vegetation along the shore. 

Where possible, data spanning 15 years was used. Although longer datasets were available for most 
sites, significant trends over time impacted model performance. However, even within the shorter 15-
year period, trends were observed at some sites. Except for the Waihopai River at Craiglochart #2, 
these trends were of relatively small magnitude [7] and could therefore be ignored. For the Waihopai 
River, trend analysis indicated an annual increase of 6 n/100mL, resulting in an overall rise of 
90 n/100mL over the 15-year period. To adjust for this trend, a linear adjustment equivalent to the 
annual change was applied to the data. Although the actual change may not have been linear and 
reflects median rather than individual values, this adjustment provides a reasonable approximation in 
the absence of more specific data. 

Predictive models were developed for all long-term monitoring sites in the recreational water quality 
program, except for the Taylor River. The Taylor River, an urban river swimming site, is influenced by 
additional factors beyond rainfall, such as sewage infrastructure failures, wildfowl movements, and 
dog droppings along the river reserve. 

The models were developed as single-predictor-variable models. The predictor variables tested were: 

 Total rainfall at nearby monitoring stations within the 12, 24, and 48 hours prior to sampling for 
indicator bacteria. 

 River flow at or near the swimming site at the time of sampling for indicator bacteria. 

Model fit was evaluated using ROC curves and the associated area under the curve (AUC)1, as well 
as p-values calculated using the Wald test. All analyses was conducted in R using the caret, glmnet 
and pROC libraries. 

 
1 A ROC (Receiver Operating Characteristic) curve provides a visual representation of a model’s performance 

across all data points. The AUC is the area under the ROC curve and higher values generally indicate better 

model performance. 
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Using a subset of sites, the performance of the four model approaches2 was tested. Overall, logistic 
regression provided the most robust models, and further refinement was based on outputs from 
logistic models only. The best fitting model for each site was chosen using the already mentioned 
model performance parameters as well as predicted vs. observed curves and confusion matrixes. 
Figure 2 shows an example of the performance measures used to assess model performance. 

 

Figure 2: Example of performance parameters and graphical representations used to determine the best 

fitting models for each site. 

4. Model Results and Discussion 
The model parameters and performance measures [4, 8] for the best-fitting models for each 
monitoring site are shown in Table 3 (parameters and performance measures for all models can be 
found in Appendix 6.1).  

 

Table 3: Covariates and Model parameters for the best performing model for each monitoring sites 

 
2 Random Forest Classifier, Stochastic Gradient Boost, XGBoost and Logistic regression. 



 Predictive Models for Swimming Sites in Marlborough 

MDC Technical Report No. 25-002  5 

For the two Wairau River monitoring sites, river flow also resulted in a comparatively good model fit. 
However, because the LAWA website mainly supports rainfall data models, the rainfall models were 
chosen for these sites. 

The poorest-performing model was for Anakiwa, located at the head of Queen Charlotte 
Sound/Tōtaranui near Okiwa Bay Estuary. The predominance of fine sediment in this shallow area 
potentially acts as a reservoir for indicator bacteria [14, 18], a factor not accounted for in the current 
rainfall-based model. Incorporating tidal influences [3] could improve model performance and should 
be considered in future developments. 

While the LAWA website uses 24-hour rainfall data as input, for many sites the 12-hour rainfall 
statistic proved to be a better predictor of unsafe bacteria concentrations. It is suggested that the 
feasibility of using 12-hour rainfall on the LAWA website be explored, potentially through the creation 
of virtual measurements in Hilltop. 

 

Table 4: Rainfall totals for different probability cut-offs. A common cut-off is at the probability of 0.5, 

which equates to a 50:50 chance of indicator bacteria levels showing unsafe swimming conditions. A 

more precautionary cut-off (i.e, 0.2, which equates to a 20% chance of unsafe conditions) could be 

chosen to protect swimmers.  

Logistic regression produces a probability curve, which estimates the likelihood of unsafe bacteria 
levels based on predictor variables (e.g., 24-hour rainfall). A common cut-off for unsafe conditions is a 
0.5 probability, meaning a 50% chance of unsafe bacteria concentrations. However, different cut-offs 
can be selected depending on priorities. Choosing a higher probability cut-off reduces false positives 
(where conditions are predicted unsafe when they are safe). Conversely, a lower probability cut-off 
ensures more instances of unsafe conditions are captured, at the cost of increasing false positives. If 
the priority is protecting swimmers' health, a lower cut-off, such as 0.2 (indicating a 20% chance of 
unsafe bacteria), might be selected. Table 4 shows rainfall thresholds for various probability cut-offs 
for the selected models. 

Once an appropriate cut-off is chosen, the corresponding rainfall total can be used to inform the 
LAWA model. The model will mark a site as unsafe once rainfall exceeds this threshold. Additionally, 
the LAWA module applies the rainfall limit over the preceding 48 hours, ensuring that sites remain 
marked as unsafe for at least 48 hours, aligning with the recommendation to avoid swimming for 48 
hours after rainfall. 

Figure 3 show an example of the difference in the information that would be displayed on LAWA if 
model outputs were to be used. The example uses the information from the Te Hoiere/Pelorus at 
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Totara Flat from the previous summer season. During that season, LAWA showed the site to be 
unsafe for swimming during one week in March 2024. As the display was based on sampling results, 
the information was updated only once per week. Bacteria concentrations in the samples taken during 
that season are shown as black bars in the top graph. For the only sample with high bacteria levels (in 
March 2024), the status update is delayed as sample analysis takes at least 24 hours. It can also be 
seen that the weekly sampling often misses rainfall events (rainfall is shown in blue), which would 
cause high bacteria level unsafe for swimmers. For example, the rainfall event in early December, 
was one that would cause unsafe swimming conditions with high certainty, but was only capture 
through sampling at the tail end of the event when bacteria levels were already decreasing again.  

The information that would have been displayed on LAWA if predictive models were used is shown in 
the middle graph. Predictive models would significantly improve the information provide to the users 
of the website by capturing all events that are caused by rainfall run-off. That is despite the chance of 
occasionally showing a site to be unsafe for swimming when it might not be, such as the rainfall event 
in January 2024. 

 

Figure 3: Example of the difference in information displayed on the LAWA website based on the latest 

sample results (current display) and the use of predictive model outputs (proposed display) 

Although indicator bacteria concentrations can now be predicted using these models, ongoing site 
monitoring remains essential [6]. This is not only mandated by the National Policy Statement for 
Freshwater Management but is also crucial for detecting changes over time, whether due to long-term 
water quality improvements or temporary issues such as sewage infrastructure malfunctions. 

If additional funding and resources become available, targeted sampling during rainfall events would 
enhance model accuracy. Such data could support the use of more advanced models, such as 
Bayesian networks [1] and artificial neural networks [5, 12], which have the potential to yield more 
precise predictions. Regardless of additional sampling, regular model reviews and updates using 
newly collected data from routine monitoring are necessary. Additionally, model adjustment methods 
to deal with the unbalanced datasets should be further investigated to provide more representative 
model outputs [9, 15]. 
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6. Appendix 

6.1. All Model Results 
The Table below shows the model parameters for all site/covariate pairs tested, with the chosen 
models highlighted. 

Table 5:  Model parameters for all site/covariate pairs tested 

 




